Physicists create a quantum refrigerator that cools with an absence of light

first_img Click to view the privacy policy. Required fields are indicated by an asterisk (*) Email Joseph Xu/Michigan Engineering, Communications & Marketing Sign up for our daily newsletter Get more great content like this delivered right to you! Country For decades, atomic physicists have used laser light to slow atoms zinging around in a gas, cooling them to just above absolute zero to study their weird quantum properties. Now, a team of scientists has managed to similarly cool an object—but with the absence of light rather than its presence. The technique, which has never before been experimentally shown, might someday be used to chill the components in microelectronics.In an ordinary laser cooling experiment, physicists shine laser light from opposite directions—up, down, left, right, front, back—on a puff of gas such as rubidium. They tune the lasers precisely, so that if an atom moves toward one of them, it absorbs a photon and gets a gentle push back toward the center. Set it up just right and the light saps away the atoms’ kinetic energy, cooling the gas to a very low temperature.But Pramod Reddy, an applied physicist at the University of Michigan in Ann Arbor, wanted to try cooling without the special properties of laser light. He and colleagues started with a widget made of semiconducting material commonly found in video screens—a light-emitting diode (LED). An LED exploits a quantum mechanical effect to turn electrical energy into light. Roughly speaking, the LED acts like a little ramp for electrons. Apply a voltage in the right direction and it pushes electrons up and over the ramp, like kids on skateboards. As electrons fall over the ramp to a lower energy state, they emit photons. This new device shows that an LED can cool other tiny objects.center_img Physicists create a quantum refrigerator that cools with an absence of light Crucially for the experiment, the LED emits no light when the voltage is reversed, as the electrons cannot go over the ramp in the opposite direction. In fact, reversing the voltage also suppresses the device’s infrared radiation—the broad spectrum of light (including heat) that you see when you look at a hot object through night vision goggles.That effectively makes the device colder—and it means the little thing can work like a microscopic refrigerator, Reddy says. All that’s necessary is to put it close enough to another tiny object, he says. “If you take a hot object and a cold object … you can have a radiative exchange of heat,” Reddy says. To prove that they could use an LED to cool, the scientists placed one just tens of nanometers—the width of a couple hundred atoms—away from a heat-measuring device called a calorimeter. That was close enough to increase the transfer of photons between the two objects, due to a process called quantum tunneling. Essentially, the gap was so small that photons could sometimes hop over it.The cooler LED absorbed more photons from the calorimeter than it gave back to it, wicking heat away from the calorimeter and lowering its temperature by a ten-thousandth of a degree Celsius, Reddy and colleagues report this week in Nature. That’s a small change, but given the tiny size of the LED, it equals an energy flux of 6 watts per square meter. For comparison, the sun provides about 1000 watts per square meter. Reddy and his colleagues believe they could someday increase the cooling flux up to that strength by reducing the gap size and siphoning away the heat that builds up in the LED.The technique probably won’t replace traditional refrigeration techniques or be able to cool materials below temperatures of about 60 K. But it has the potential to someday be used for cooling microelectronics, according to Shanhui Fan, a theoretical physicist at Stanford University in Palo Alto, California, who was not involved with the work. In earlier work, Fan used computer modeling to predict that an LED could have a sizeable cooling effect if placed nanometers from another object. Now, he said, Reddy and his team have realized that idea experimentally. Country * Afghanistan Aland Islands Albania Algeria Andorra Angola Anguilla Antarctica Antigua and Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan Bahamas Bahrain Bangladesh Barbados Belarus Belgium Belize Benin Bermuda Bhutan Bolivia, Plurinational State of Bonaire, Sint Eustatius and Saba Bosnia and Herzegovina Botswana Bouvet Island Brazil British Indian Ocean Territory Brunei Darussalam Bulgaria Burkina Faso Burundi Cambodia Cameroon Canada Cape Verde Cayman Islands Central African Republic Chad Chile China Christmas Island Cocos (Keeling) Islands Colombia Comoros Congo Congo, the Democratic Republic of the Cook Islands Costa Rica Cote d’Ivoire Croatia Cuba Curaçao Cyprus Czech Republic Denmark Djibouti Dominica Dominican Republic Ecuador Egypt El Salvador Equatorial Guinea Eritrea Estonia Ethiopia Falkland Islands (Malvinas) Faroe Islands Fiji Finland France French Guiana French Polynesia French Southern Territories Gabon Gambia Georgia Germany Ghana Gibraltar Greece Greenland Grenada Guadeloupe Guatemala Guernsey Guinea Guinea-Bissau Guyana Haiti Heard Island and McDonald Islands Holy See (Vatican City State) Honduras Hungary Iceland India Indonesia Iran, Islamic Republic of Iraq Ireland Isle of Man Israel Italy Jamaica Japan Jersey Jordan Kazakhstan Kenya Kiribati Korea, Democratic People’s Republic of Korea, Republic of Kuwait Kyrgyzstan Lao People’s Democratic Republic Latvia Lebanon Lesotho Liberia Libyan Arab Jamahiriya Liechtenstein Lithuania Luxembourg Macao Macedonia, the former Yugoslav Republic of Madagascar Malawi Malaysia Maldives Mali Malta Martinique Mauritania Mauritius Mayotte Mexico Moldova, Republic of Monaco Mongolia Montenegro Montserrat Morocco Mozambique Myanmar Namibia Nauru Nepal Netherlands New Caledonia New Zealand Nicaragua Niger Nigeria Niue Norfolk Island Norway Oman Pakistan Palestine Panama Papua New Guinea Paraguay Peru Philippines Pitcairn Poland Portugal Qatar Reunion Romania Russian Federation Rwanda Saint Barthélemy Saint Helena, Ascension and Tristan da Cunha Saint Kitts and Nevis Saint Lucia Saint Martin (French part) Saint Pierre and Miquelon Saint Vincent and the Grenadines Samoa San Marino Sao Tome and Principe Saudi Arabia Senegal Serbia Seychelles Sierra Leone Singapore Sint Maarten (Dutch part) Slovakia Slovenia Solomon Islands Somalia South Africa South Georgia and the South Sandwich Islands South Sudan Spain Sri Lanka Sudan Suriname Svalbard and Jan Mayen Swaziland Sweden Switzerland Syrian Arab Republic Taiwan Tajikistan Tanzania, United Republic of Thailand Timor-Leste Togo Tokelau Tonga Trinidad and Tobago Tunisia Turkey Turkmenistan Turks and Caicos Islands Tuvalu Uganda Ukraine United Arab Emirates United Kingdom United States Uruguay Uzbekistan Vanuatu Venezuela, Bolivarian Republic of Vietnam Virgin Islands, British Wallis and Futuna Western Sahara Yemen Zambia Zimbabwe By Daniel GaristoFeb. 14, 2019 , 3:50 PMlast_img read more

"Physicists create a quantum refrigerator that cools with an absence of light"